Mean-Square Performance of Adaptive Filter Algorithms in Nonstationary Environments

نویسندگان

  • Mohammad Shams
  • John Håkon Husøy
چکیده

Employing a recently introduced unified adaptive filter theory, we show how the performance of a large number of important adaptive filter algorithms can be predicted within a general framework in nonstationary environment. This approach is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. This general performance analysis can be used to evaluate the mean square performance of the Least Mean Square (LMS) algorithm, its normalized version (NLMS), the family of Affine Projection Algorithms (APA), the Recursive Least Squares (RLS), the Data-Reusing LMS (DR-LMS), its normalized version (NDR-LMS), the Block Least Mean Squares (BLMS), the Block Normalized LMS (BNLMS), the Transform Domain Adaptive Filters (TDAF) and the Subband Adaptive Filters (SAF) in nonstationary environment. Also, we establish the general expressions for the steady-state excess mean square in this environment for all these adaptive algorithms. Finally, we demonstrate through simulations that these results are useful in predicting the adaptive filter performance. Keywords—Adaptive filter, general framework, energy conservation, mean-square performance, nonstationary environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of Adaptive Filtering Algorithms for System Identification

The paper presents a comparative study of NLMS (Normalized Least Mean Square), NVSS (New Variable Step Size) LMS (Least Mean Square), RVSS (Robust Variable Step Size) LMS, TVLMS (Time Varying Least Mean Square) and IVSS (Improved Variable Step Size) LMS adaptive filter algorithms. Four performances criterion are utilized in this study: Minimum Mean Square Error (MSE), Convergence Speed, Algorit...

متن کامل

Analysis of LMS-Newton adaptive filtering algorithms with variable convergence factor

An analysis of two LMS-Newton adaptive filtering algorithms with variable convergence factor is presented. The relations of these algorithms with the conventional recursive least-squares algorithm are first addressed. Their performance in stationary and nonstationary environments is then studied and closed-form formulas for the excess mean-square error (MSE) are derived. The paper deals, in add...

متن کامل

A Family of Variable Step-Size Normalized Subband Adaptive Filter Algorithms Using Statistics of System Impulse Response

This paper presents a new variable step-size normalized subband adaptive filter (VSS-NSAF) algorithm. The proposed algorithm uses the prior knowledge of the system impulse response statistics and the optimal step-size vector is obtained by minimizing the mean-square deviation(MSD). In comparison with NSAF, the VSS-NSAF algorithm has faster convergence speed and lower MSD. To reduce the computa...

متن کامل

Mean-Square Performance Analysis of the Family of Selective Partial Update NLMS and Affine Projection Adaptive Filter Algorithms in Nonstationary Environment

We present the general framework for mean-square performance analysis of the selective partial update affine projection algorithm (SPU-APA) and the family of SPU normalized least mean-squares (SPU-NLMS) adaptive filter algorithms in nonstationary environment. Based on this the tracking performance of Max-NLMS, N-Max NLMS and the various types of SPU-NLMS and SPU-APA can be analyzed in a unified...

متن کامل

Extending the Radar Dynamic Range using Adaptive Pulse Compression

The matched filter in the radar receiver is only adapted to the transmitted signal version and its output will be wasted due to non-matching with the received signal from the environment. The sidelobes amplitude of the matched filter output in pulse compression radars are dependent on the transmitted coded waveforms that extended as much as the length of the code on both sides of the target loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012